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Numerical study of the time dependent behavior
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Numerical simulation coupled with a realistic material model for high temperature
structural ceramics is used to gain insight into the time dependent behavior of ceramics
under bending. No simplifications used in conventional analysis methods are invoked, such
as the assumption of steady-state creep and omission of elastic deformation etc. As yet, the
formulation is shown to be sufficiently general to adopt arbitrary material models. The final
formulation results in a set of first order coupled ordinary differential equations that can be
solved with ease by well-established numerical techniques. Due to the time-dependent and
inhomogeneous stress and strain distributions in the specimen, it is generally difficult to
extract intrinsic material information associated with a particular stress state from the bend
creep test. The validity of the material parameters obtained from bend creep tests depends
on the validity of the assumptions that underlie the analysis. More in situ measurements to
obtain information besides deflection, such as the location of the neutral axis etc., will be
helpful for interpreting the bend test data. However, in this case, the major advantage of
the bend test, namely, simplicity, is eradicated. C© 2002 Kluwer Academic Publishers

1. Introduction

Due to their many superior mechanical properties at
high temperatures, e.g., high strength, low density, high
oxidation resistance, and low coefficient of thermal ex-
pansion etc., silicon nitride (Si3N4), silicon carbide
(SiC) ceramics and related composites have been the
major candidates as high temperature structural mate-
rials. For high temperature applications, the time depen-
dent deformation (creep) and fracture (creep fracture)
are a major concern in design especially when stringent
dimensional stability and design tolerance are required.
The design database for creep and creep fracture must
be derived based on intrinsic material behavior, which is
determined directly by physical measurements but not
indirectly by deduction based on theories. The case in
point is the method of generating creep data by uniaxial
testing versus that by 3-point or 4-point bend testing.
Under uniaxial loading, a true uniform stress is induced
in the test sample. Therefore the measured creep defor-
mation represents the intrinsic material response to an
unambiguously determined stress. On the other hand,
the stress at any generic point in the bend specimen
under a constant load varies with time, and can not be
measured directly. Therefore the interpretation of the
data has to rely on certain assumptions. However, be-
cause of the simplicity in specimen design, test setup,
and low cost, bend test was used extensively in the
past and has been continuously used to characterize the
high temperature creep behavior of the structural ce-
ramics. Some can be cited for the works by Chen and
Chuang [1], Lin and Becher [2], Thayer and Yang [3],

Salem and Choi [4], and Rendtel and Hübner [5] among
others.

The typical assumptions underlying the analysis of
the bend test data are that the creep behavior has reached
steady state and follows power law model, e.g.,

ε̇c = Aσ n (1)

where ε̇c is the steady state creep rate, σ the stress, n
(stress exponent) and A (pre-exponent constant) are the
material constants. The objective of the bend test often
emphasizes on the extraction of material constants in
Equation 1. Since both tensile and compressive stresses
are involved in a bend test, some further assumption on
the symmetry between tension and compression creep
also needs to be made. Assuming symmetrical behavior
between tension and compression, i.e., A and n are the
same for tension and compression, Hollenberg et al.
[6], established a simple relation between the deflec-
tion of the specimen and the material constants A and
n. This relation was used by Lin and Becher [2] to char-
acterize the creep behavior of Alumina-SiC-whisker
composites. To incorporate asymmetry in the analy-
sis, Finnie [7] considered the case in which At �= Ac,
and nt = nc = 1 and obtained a closed form solution for
the creep displacement in a bend test. His analysis was
later extended by Talty and Dirks [8] for nt = nc = N
where N is an arbitrary number. The most general case,
i.e., At �= Ac, and nt �= nc, was studied by Chuang [9].
For the symmetrical case, the neutral axis should stay
the same as the central axis of the test beam. For the
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asymmetrical case, the neutral axis is shifted to the com-
pression side of the beam. However, because of the as-
sumption of steady state, the position of the neutral axis
and stress and strain fields are invariant with time [1, 9].
Other details of these analyses will be discussed later.

Some obvious issues associated with the various
analysis methods mentioned above are: how valid the
aforementioned assumptions are, how the determined
material constants are affected by these assumptions,
and how stress and strain evolve with time in the spec-
imen during a bend test, etc. To try to experimentally
resolve these issues will be very difficult if not impos-
sible partially because of the very high temperatures
involved in the bend creep test of structural ceramics.
In this study, we try to use numerical simulations to ad-
dress these issues. The objective is to gain a good insight
into the time dependent behavior of ceramics under
bending and shed light on the use of bend test to extract
high temperature creep data for structural ceramics.

2. Deformation and life prediction model
for GN-10 Si3N4 ceramic

2.1. Tension creep
Realistic numerical simulations require realistic ma-
terial model. Nearly all the material models for high
temperature structural ceramics are based on power-
law creep as described by Equation 1. A more realistic
deformation and life prediction model was developed
by Ding et al. based on a systematic experimental in-
vestigation of the tensile creep and creep rupture of a
grade of Si3N4, commercially designated as GN-10∗
[10]. The model was formulated using the state vari-
able approach. Two internal state variables, namely a
hardening variable (δ) and a damage variable (ω) were
employed to characterize the current inelastic state of
the material. The model consists of three equations, a
flow rule, Equation 2 shown below, which describes
the inelastic strain rate (ε̇c), a more generic term than
“creep rate”, as a function of the internal state variables,
applied stress (σ ), and temperature; and two evolution
rules, Equations 3 and 4, for the two internal state vari-
ables. Specifically, the model is in the following form.

ε̇c =
54n ε̇0

(
σ − σth

54
− c

)n

e− Qe
RT

δ
(2)

δ̇ = δ̇0

δm
e− Qδ

RT (3)

ω̇ =
ω̇0

(
σ

54

)υ

e− Qω

RT

δ(1 − ω)
(4)

where ε̇0 = e78.08 for T ≤ 1200◦C, e78.08 for T >

1200◦C; σth = 1765.8 − 1.12T MPa for T ≤ 1250◦C,
516.9 − 0.3T MPa for T > 1250◦C; σtrans = 1848.3 −
1.12T MPa for T ≤ 1250◦C, 1108.1 − 0.634T MPa for
T > 1250◦C; c = 0, n = 1 for σ ≤ σtrans, c = 1, n = 1.32

∗ GN-10 is a commercial grade of hot-isostatically-pressed Si3N4 ce-
ramic containing small additions of Y2O3 and SrO as a densification
aids, engineered by Garrett Ceramic Components Division of Allied-
Signal Aerospace Company, Torrance, CA.

for σ > σtrans and T ≤ 1250◦C, c = 1, n = 1.7 for
σ > σtrans and T > 1250◦C; Qε = 957.4 kJ/mole for
T ≤ 1200◦C , 270 kJ/mole for T > 1200◦C; m = 1/3;
δ̇0 = e93.5 for T ≤ 1200◦C , e−1.26 for T > 1200◦C;
Qδ = 1174 kJ/mole for T ≤ 1200◦C, 13.26 kJ/mole
for T > 1200◦C; ω̇0 = e103.46, ν = 10.47, and Qω =
149 kJ/mole; ω̇ = 0 for σ ≤ 0. T is the absolute tem-
perature in K , R is the gas constant, σth is the thresh-
old stress below which creep is assumed to be negligi-
ble, and σtrans is the transition stress from a linear to a
nonlinear stress dependence of the inelastic strain rate.
In terms of creep fracture, σtrans is also the transition
stress from the low-stress long-term creep to high-stress
short-term creep.

Hardening of the material, which is characterized by
δ, appears to be mainly due to a combination of the
devitrification of the residual glass phase (GN-10 has a
continuous glass film at the boundaries) as well as con-
sequent phase transformations. The initial values for δ

and ω are 1 and 0 respectively and both of them in-
crease monotonically. The rupture is signified by ω = 1
or ω̇ = ∞. It should be noted that Equation 3 is coupled
with Equations 2 and 4 respectively, but (2) and (4) are
independent of each other. Therefore, what Equations 2
to 4 describe is essentially two independent processes,
namely, creep deformation and fracture. Both processes
can be impeded by the strengthening effect due to the
hardening of the grain boundary phase. This fact can
also be easily seen from the mathematical point of view
as follows. Equation 2 can be integrated as:

δ =
[

1 + (1 + m)δ̇0e− Qδ
RT

] 1
m+1

(5)

Substitution of Equation 5 into Equations 2 and 4 yields
the following two independent equations for ε̇c and ω̇

respectively.

ε̇c =
54n ε̇0

(
σ − σth

54
− c

)n

e−Qε/RT

[
1 + (1 + m)δ̇0e−Qδ/RT

]1/(m+1)

= f (σ, T, t) (6)

ω̇ =
ω̇0

(
σ

54

)υ

e− Qω
RT

[
1 + (1 + m)δ̇0e−Qδ/RT

]1/(m+1)
(1 − ω)

= g(σ, T, t) (7)

Equations 6 and 7 also indicate that the model es-
sentially follows the time-hardening rule. In addition
to simplifying the model, decoupling of Equations 2
and 4, or equivalently, neglecting the possible inter-
action between damage and creep deformation, was
based on the observation that at least for GN-10, frac-
ture seems to be dominated by localized damage due
to the growth of preexisting defects, rather than dis-
tributed damage caused by void nucleation, growth and
coalescence even though the latter may operate con-
currently. Other details of the model can be found in
Ref. [10]. A comparison of the model and experimen-
tal data is shown in Fig. 1. In general, the creep data are
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reproduced by the model reasonably well. The model
was also demonstrated to give a reasonable description
of the deformation and fracture behavior of GN-10 un-
der constant strain-rate tensile loading [11]. The above
scalar model can also be extended into a tensor form to
incorporate the possible sensitivity of material behav-
ior to pressure, dilatancy and compaction, asymmetry
between tension and compression, and deformation in-
duced hardening and softening [12].

In addition to the advanced model, the creep data
shown in Fig. 1 were also analyzed using the traditional
power law creep relation. To this end, the steady state
creep rates need to be determined first. For a creep curve
exhibiting three stages of creep, namely, primary, sec-
ondary, and tertiary creep, the steady state (secondary)
creep rate can be determined unambiguously as the
creep rate at the transition to tertiary creep. It is ob-
vious that the steady state creep rate is also the mini-
mum creep rate during the creep lifetime. However, the
creep data shown in Fig. 1 shows neither tertiary creep
nor appreciable steady state creep. Consequently, creep
rates at rupture were used to characterize the power law
relation. Including the temperature dependence, the re-

(a) (b)

(c) (d)

Figure 1 Creep data (symbols) and model predictions (solid lines) of GN-10 ceramic under uniaxial tensile loading: (a) 1150◦C; (b) 1200◦C;
(c) 1250◦C; (d) 1300◦C.

lation was determined to be

ε̇c = e56σ 12.6e−1645/RT (8)

The definitions and units of the symbols are the same
as those used in Equations 2 to 4. In other words, the
stress exponent is equal to 12.6. The number 1645
is in kJ/mole and usually termed as the activation
energy [13].

2.2. Compression creep
To analyze bend specimen in creep, the creep behavior
of the material in compression must be known. Fig. 2
shows sample of creep data of GN-10 Si3N4 tested at
1300◦C in compression with a series of applied stresses
beginning from−125 MPa [14], including a creep curve
for a specimen tested in tension at 125 MPa (ruptured
in 15.2 h) for comparison. The compressive stress was
increased intermittently in steps of −25 MPa incre-
ment. The asymmetrical creep behavior in tension and
compression is clearly discerned. The creep rate under
a tensile stress of 125 MPa is significantly higher than
that under the same stress in compression by about three
orders of magnitude. Although tensile creep curves at
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Figure 2 Creep curves of GN-10 Si3N4 tested in tension (ruptured in 15.2 h) and in compression at 1300◦C. The compressive stress was increased
intermittently in steps of −25 MPa from −125 MPa.

stresses above 125 MPa are not available for compari-
son, more severe contrast in creep behavior under ten-
sion and compression can be contemplated. Similar test
was also performed on SN-88 Si3N4 by Yoon et al. [15].

As mentioned earlier, the scalar model described by
Equations 2 to 4 can be extended into a tensor form to
incorporate the asymmetry between tension and com-
pression. However, characterization of a tensor model
requires more sophisticated experimental data such as
those on compression creep at various stress levels,
creep under mixed loading, and deformation induced
dilatancy etc. There are very few data available in this
regard. Hence, in the following analysis, two extreme
cases will be analyzed. One is that compression creep
is assumed to be symmetrical with respect to tension
creep. The other is to completely ignore the creep un-
der compression. The real material behavior will be
somewhere in between. However, for GN-10, the creep
behavior is expected to be much closer to the latter as
demonstrated in Fig. 2.

3. Formulation of the four point
bending problem

A typical experimental setup for a four point bend test
is shown in Fig. 3. The middle section between load-
ing points B and C is subjected to constant bending
moment. Therefore, the stress distribution on any plane

normal to the beam axis is identical. The strain is cal-
culated from the relative deflection at the middle of the
span (U in Fig. 3) measured with respect to the line
connecting the two loading points [2, 3]. A hypothet-
ical specimen conforming to ASTM standard C1161,
namely, L = 40 mm, 2 h (depth) = 3 mm is used in the
following analyses. The length of the middle span (BC)
is L/2. Since all the calculations are to be carried out
in a “moment per unit thickness” basis, the thickness
of the specimen is not involved in the analysis.

The total strain (εT ) consists of inelastic or creep
strain (εc) and elastic strain (εe = σ/E , where E is elas-
tic modulus), i.e.,

εT = εe + εc = σ/E + εc (9)

Or in rate form,

σ̇

E
= ε̇T − ε̇c (10)

Following the conventional assumption used in the sim-
ple beam theory, namely, plane sections remains plane
during bending, εT is linearly distributed along the
depth of the specimen as shown in Fig. 3, and can be
written as

εT = z + c

ρ
(11)
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Figure 3 A schematic diagram of a typical four point bend test.

or

ε̇T = ċ

ρ
− (z + c)ρ̇

ρ2
(12)

where c is the distance between the central axis and
the strain neutral axis along which the total strain is
zero, z is the coordinate in the z direction with respect
to a coordinate system whose origin is located at the
center of the specimen (see Fig. 3), and ρ is the radius
of curvature to the strain neutral axis. Substitution of
Equation 12 into Equation 10 yields

σ̇ = E

[(
ċ

ρ
− (z + c)ρ̇

ρ2

)
− ε̇c

]
(13)

The boundary conditions on either side B or side C are
that the resultant force is equal to zero and the resul-
tant moment is equal to the applied moment per unit
thickness M , namely,

∫ h

−h
σ dz = 0, and

∫ h

−h
σ z dz = M (14)

In rate form, they can be written as

d

dt

∫ h

−h
σ dz =

∫ h

−h
σ̇ dz = 0, and

d

dt

∫ h

−h
σ z dz

=
∫ h

−h
σ̇ z dz = 0 (15)

The time derivative in the second equation is equal to
zero because M is a constant. Since z represents the co-
ordinate of a material point with respect to the central
axis, it does not change with time, i.e., ż = 0. The rate
of neutral axis shift is given by ċ. Substitution of Equa-
tion 13 into Equation 15 then leads to the following two
equations,

∫ h

−h

[
ċ

ρ
− (z + c)ρ̇

ρ2

]
dz = 2h

[(
ċ

ρ

)
−

(
ρ̇c

ρ2

)]

=
∫ h

−h
ε̇c dz =

∫ h

−h
f (σ, T, t ; z) dz = A (16)

and

∫ h

−h

[
ċ

ρ
− (z + c)ρ̇

ρ2

]
z dz = −2h3

3

(
ρ̇

ρ2

)
=

∫ h

−h
ε̇cz dz

=
∫ h

−h
f (σ, T, t ; z)z dz = B (17)
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respectively. The parameter z is included in the function
f to indicate the inhomogeneous stress distribution and
the corresponding creep rate across the depth of the
specimen. From the above two equations, ρ̇ and ċ can
be solved as

ρ̇ = − 3

2h3
ρ2 B (18)

ċ = ρ

[
A

2h
− 3

2h3
Bc

]
(19)

Equations 13 and 7 can also be rewritten as

σ̇ = E

[(
A

2h
− 3

2h3
Bc + 3(z + c)

2h3
B

)
− f (σ, T, t ; z)

]

(20)

ω̇ = g(σ, T, t ; z) (21)

In the following analysis, σ and ω are evaluated at 21
equally spaced (0.15 mm apart) points across the depth.
Therefore, Equations 18 to 21 constitute a set of 44 cou-
pled first order ordinary differential equations for the
evolution of ρ, c, σ and ω. The numerical scheme for
solving these type of equations has been well estab-
lished. To complete the formulation, the initial condi-
tions have to be specified. They are zero for c and ω.
The initial conditions for σ and ρ are the initial elastic
stress distribution, namely, σ = (Mz)/I , where I is the
moment of inertia, and ρ0 = E I/M respectively. Based
on the specimen geometry shown in Fig. 3, the relation
between the moment per unit thickness, M in Newtons,
and the initial elastic stress along outside fiber, σ0
in MPa, is M = 1.5 σ0. The center deflection relative
to the two loading points B and C , i.e., U in Fig. 3,
can be found from the deflection-curvature relation for
a simple beam undergoing small deflection, namely,

d2z

d2x
= 1

ρ + c
(22)

“Small deflection” is a very legitimate assumption
for bending of brittle materials. Equation 22 can be
integrated to obtain

U = L2

32(ρ + c)
(23)

and

dU

dt
= − L2

32

[
ρ̇ + ċ

(ρ + c)2

]
(24)

The above deflection formulae were for the central
axis of the specimen.

Since the above formulation does not invoke any sim-
plified assumptions, its solution should represent a rea-
sonably realistic simulation of the bend test. With the
inclusion of the damage variable (ω), the rupture time
can also be estimated. Furthermore, the formulation is
not limited to any specific material model. Different

deformation and damage models only affect the forms
of functions f and g defined in Equations 6 and 7.

The correlation between the above general formula-
tion and other analysis methods mentioned in the In-
troduction is discussed in the following.

3.1. Hollenberg et al.’s analysis [6]
The assumption of symmetry in tensile and compressive
creep mandates that the neutral axis remains in coin-
cidence with the central axis of the specimen or c = 0.
The existence of steady state creep further asserts that
the stress distribution remains unchanged with time;
therefore, the elastic strain rate must be zero. With the
aid of the power law equation, Equation 12 reduces to

ε̇T = ε̇c = − ρ̇z

ρ2
= Aσ n (25)

where ρ̇ < 0. In the region where z > 0, ε̇c > 0 and
σ > 0; and where z < 0, ε̇c < 0 and σ < 0. For either
case, σ can be written as

|σ | =
(

− ρ̇

Aρ2

)1/n

|z|1/n (26)

The first equation of Equation 14 is automatically sat-
isfied. The second one leads to

(
− ρ̇

Aρ2

)1/n( 2n

2n + 1

)
h2+ 1

n = M (27)

With the aid of Equation 24 and c = ċ = 0, Equation 27
can be written in the following logarithmic form as

log

(
dU

dt

)
+ log

[
32

AL2

(
2n

2n + 1

)n

h2n+1
]

= n log M

(28)

On the log-log plot of dU/dt versus M , the values of
n is determined from the slope of Equation 28 and A
from the intercept. Equations 27 and 28 indicate that
when M remains constant with respect to time, the rate
change of the curvature and U are also constant, and
the constant stress distribution is thereby implied by
Equation 28.

3.2. Chuang’s analysis [1, 9]
Chuang et al. assumed that c �= 0, but dc/dt = 0. There-
fore, Equation 12 becomes

ε̇c = − ρ̇(z + c)

ρ2
(29)

Furthermore, tensile creep and compressive creep are
assumed to follow different power law relations, i.e.,

ε̇c = Atσ
nt (30)

for tension, and

ε̇c = −Ac|σ |nc (31)

for compression. In the region where z > −c, ε̇c > 0,
and
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σ =
[

− ρ̇(z + c)

Atρ2

]1/nt

(32)

and in the region where z < −c, ε̇c < 0, and

σ = −
[
ρ̇(z + c)

Acρ2

]1/nc

. (33)

Substitution of Equations 32 and 33 into Equation 14
then leads to the following two equations:

−
[
− ρ̇

ρ2 Ac

] 1
nc

∫ −c

−h
[−(z + c)]1/nc dz

+
[
− ρ̇

ρ2 At

] 1
nt

∫ h

−c
[(z + c)]1/nt dz = 0 (34)

−
[
− ρ̇

ρ2 Ac

] 1
nc

∫ −c

−h
[−(z + c)]1/nc z dz

+
[
− ρ̇

ρ2 At

] 1
nt
∫ h

−c
[(z + c)]1/nt z dz = M (35)

where

∫ −c

−h
[−(z + c)]1/nc dz = nc

nc + 1
(h − c)

nc+1
nc

∫ h

−c
[(z + c)]1/nt dz = nt

nt + 1
(h + c)

nt +1
nt

∫ −c

−h
[−(z + c)]1/nc z dz = − nc

2nc + 1
(h − c)

2nc+1
nc

− cnc

nc + 1
(h − c)

nc+1
nc

and

∫ h

−c
[(z + c)]1/nt z dz = − nt

2nt + 1
(h + c)

2nt +1
nt

− cnt

nt + 1
(h + c)

nt +1
nt

Since all the four integrals are independent of time,
ρ̇/ρ2 and stress distribution are also independent of
time.

Equations 34 and 35 involve six unknowns, namely,
ρ̇/ρ2, c, At, Ac, nt and nc. To apply these equations to
determine the creep parameters, two approaches were
proposed [1]. The first approach employed direct nu-
merical fitting of ρ̇/ρ2, which can be determined by
the measured load point displacement rate, by Equa-
tions 34 and 35. This process is an iterative and tedious
process. The second approach was to measure c using
two columns of fiducial marks indented on the side of
the specimen. With c and ρ̇/ρ measured, Equations 34
and 35 only involve four unknowns. Since one experi-
ment generates one unique set of Equations 34 and 35
after c and ρ̇/ρ are replaced by the measured values,
two experiments will provide four equations for four
unknowns. However, these four equations can still not

be solved analytically unless some further assumption
and simplification are made [1, 16].

4. Simulated material behavior under four
point bending

To understand the behavior of structural ceramics under
bending and address the issues mentioned in the Intro-
duction section, we first carry out a detailed analysis for
the hypothetical beam subjected to four-point bending
at 1300◦C. The bending is assumed to induce elastic
stresses of ±125 MPa at the outer chords before creep
commences. Results are presented in physical quan-
tities instead of normalized ones as used by Chuang
[1, 9], Finnie [7] and others. Making use of the para-
metric values given in earlier sections, Equations 6 and
7 can be written respectively as

ε̇c = α

(1 + 0.137t)0.75
(36)

and

ω̇ = − 1.13 × 10−23σ 10.47

(1 + 0.137t)0.75(1 − ω)
(37)

respectively, where α = 3.585 × 10−6(σ − 99)1.7

for σ > 110.8 MPa; 3.585(σ − 45) for 45 ≤ σ ≤
110.8 MPa; and 0 for σ ≤ 45 MPa. To investigate
the effects of material model on the simulated test
results, power law creep model, namely, Equation 8,
was also studied. Hereafter, the model represented by
Equations 2 to 4 or 6 and 7 will be referred as the
advanced model. For each model, two cases, namely
symmetrical and asymmetrical, were considered. For
the asymmetrical case, ε̇c = 0 whenever σ ≤ 0; and for
the symmetrical case, compressive creep and tensile
creep are of the same magnitude but opposite signs.
As mentioned earlier, these two cases represent two
extremes. The actual response will be somewhere in
between depending on the amount of compression
creep. Since GN-10 appears to creep very little under
compression, the results from the simulation based on
asymmetrical, advanced model is expected to be close
to reality.

The relative deflection, U , for the inner span is sim-
ulated based on four different combinations of the ma-
terial models. Results are shown in Fig. 4. Case (a)
is predicted based on symmetric power-law creep in
tension/compression, case (b) asymmetric power-law
creep, case (c) symmetric creep governed by the ad-
vance model, and case (d) asymmetric creep governed
by the advanced model. Stress and damage profiles at
various times are predicted based on the above four
conditions and compiled in Figs 5 and 6 respectively. In
cases (a) and (c), the neutral axis stays coincident with
the central axis of the specimen, i.e., c = 0, as shown
in Fig. 5a and c. In cases (b) and (d), the redistribution
of the internal stresses (Fig. 5b and d) and consequen-
tial shifting of the neutral axis (shown in Fig. 7) are
prompted by rapid relaxation of the high initial tensile
stresses occurring in the outer chord region in com-
pliance to the premise that planes normal to the cen-
tral axis must remain plane during bending. The two
c-curves shown in Fig. 7 are characteristically similar,
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Figure 4 Simulated creep displacement for a four point bend specimen
subjected to an initial elastic stress of 125 MPa and 1300◦C: (a) symmet-
rical power law creep (b) asymmetrical power law creep (c) symmetrical
creep governed by advanced model (d) asymmetrical creep governed by
advanced model.

(a) (b)

(c) (d)

Figure 5 The stress distribution as a function of time for a four point bend specimen subjected to an initial elastic stress of 125 MPa and 1300◦C:
(a) symmetrical power law creep (b) asymmetrical power law creep (c) symmetrical creep governed by advanced model (d) asymmetrical creep
governed by advanced model.

but differ in magnitude because the creep rate at any
given stress governed by Equation 8 is always lower
than that by Equation 36 at the same stress level during
primary creep period, which is absent in the power-law
model.

The rate of stress redistribution also has strong ef-
fects on the rupture life of the test specimen. According
to Equation 4, only tensile stress will induce damage.
Therefore, the faster the tensile stress is relaxed, the less
damage the material incurs. This can be seen from the
damage distribution curves shown in Fig. 6 for cases
(b) and (d). Although the specimen for case (b) suffers
more damage than that for case (d), both specimens
survive even after about 10 years (87,840 h) accord-
ing to the simulation. For cases (a) and (c), because of
the symmetrical compressive creep, the tensile stress
relaxation is much slower than cases (b) or (d). Conse-
quently, the creep rupture lives are much shorter, 172 h
and 3084 h for (a) and (c) respectively.

As mentioned earlier, one underlying assumption
adopted in the currently existing analyses for bend creep
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(a) (b)

(c) (d)

Figure 6 The distribution of ω (omega) as a function of time for a four point bend specimen subjected to an initial elastic stress of 125 MPa and
1300◦C (a) symmetrical power law creep (b) asymmetrical power law creep (c) symmetrical creep governed by advanced model (d) asymmetrical
creep governed by advanced model.

test is the existence of a steady state at which the stress
distribution is invariant with time. Based on the current
simulation, such state may be possible if the material
itself does have a steady state and creep is symmetrical,
i.e., case (a). The existence of steady state for this case
is evidenced by the linear relationship between creep
displacement and time, i.e., constant rate, as shown in
Fig. 4. The attainment of steady state requires both
the material behavior and stress distribution be steady.
Thus, in a strict sense, the steady state does not exist
in other cases. In order to satisfy the requirement that
planes remains plane, whenever there is creep in the
tension side, the compression side has to deform pro-
portionally. For the asymmetrical cases, since there is
little creep under compression, the only way to deform
the specimen in the compression side is by the elastic
deformation introduced by the increase of the compres-
sive stresses. Consequently, the stress distribution has to
keep changing, i.e., unsteady. This can be roughly seen
from Fig. 7 which shows that the neutral axis is contin-
uously shifting even after 10 years (87,840 h). For case
(c), creep is symmetrical. However, because the creep
model does not prescribe steady state creep behavior,
the steady state can not be reached from the theoreti-

Figure 7 Shift of the neutral axis as a function of time for cases (b) and
(d). See the captions of Figs 4 to 6. Notice that for the symmetrical cases
(a) and (c), the neutral axis remains to be the same as the central axis of
the specimen, i.e., c = 0.

cal point of view. Despite of the lack of mathematical
steady state, curves (b), (c), and (d) do show some ap-
parent steady state because the transition rate at the later
stage of the simulation is very small. Experimentally,
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the limitation on the resolution of instruments may also
result in an apparent steady state. More discussion on
steady state creep will be given in the next section.

It should also be noted that Equation 9, does not
mandate that σ must be zero when εT is zero. In other
words, the strain neutral axis may not coincide with the
stress neutral axis in general. However, if the material
does not creep or creeps very little under compression
as assumed in cases (b) and (d), then these two axes
should coincide because εT = εe in the compression
side. The deviation of the strain neutral axis from stress
neutral axis from stress neutral axis was also noted and
discussed in [17].

5. Estimation of creep exponents
from simulated results

As mentioned earlier, extraction of stress exponent, n,
and activation energy, Q, is usually the main purpose
of the bend creep test. The known inputs for these tests
are typically the applied bending moment and measured
beam deflection. Little is known on the internal stress
and strain distribution in the specimen. In this section,
we will first use numerical simulation to generate a set
of creep displacement curves for the aforementioned
hypothetical specimen under various stresses and tem-
peratures. We then use these simulated creep curves
as the input to extract n and Q. Unlike physical bend-
ing experiments, we have complete knowledge about
the input including the stress and strain evolution in
the specimen for these virtual experiments. Thus, it’s
possible to gain good insight into the correlation be-
tween the outputs, e.g., n and Q, and the inputs using
the knowledge developed in previous sections. This ob-
jective can be achieved without the necessity of using
complicated analysis such as that proposed in [1, 16].
In fact, a simpler analysis will be easier to reveal the
correlation between the input and output. In this regard,
Hollenberg’s approach for extracting n and Q is used
in this study.

To estimate the stress exponent, a family of creep
curves under various initial elastic stress distributions
are needed. Shown in Fig. 8a are simulated creep curves
at 1300◦C calculated based on the advanced model with
the asymmetrical creep behavior illustrated in case (d)
study. The long-term creep curves with initial stresses
below 175 MPa are plotted in Fig. 8a, showing no rup-
ture occurring within 87,840 h. The short-term creep
data up to 312 hours are shown in Fig. 8b. The rup-
ture lives at 200 MPa and 225 MPa were calculated to
be 6.09 h (shown in Fig. 8b) and 0.02 h respectively.
The latter suggests that the flexural rupture strength
at 1300◦C would be slightly above 225 MPa. This
value is comparable to the uniaxial fast fracture strength
(199 MPa) estimated from the advanced model and ex-
perimental values (256 and 270 MPa) obtained from
uniaxial tensile tests with a loading rate of 7.5 MPa/m
[11]. The stress profiles under the six initial stresses and
their subsequent redistribution at a few selected times
are depicted in Fig. 9. Interestingly, the redistribution
tends to flatten the tensile stress profiles into a trape-
zoidal profile with a height of about 45 MPa, which by
no coincidence is the threshold stress at 1300◦C. No

(a)

(b)

Figure 8 The simulated creep curves at 1300◦C based on the advanced
model and asymmetrical creep: (a) the creep data simulated up to
87,840 h; (b) the early stage of the simulated creep data (up to 312 hours).

creep occurs at or below the stress according to Equa-
tion 36. Failure to ease the high tensile stress in the
200 MPa test leads to the short rupture life. The shift-
ing of the stress neutral axis and the resulting increase
in the compressive stress are dramatic with increase
of applied bending moment, as shown in Fig. 9g. The
above analyses illustrate that bending creep curves that
describe the change of relative deflection U with time
can not be easily converted in the form of uniaxial creep
curves because of stress relaxation and shifting of the
stress and strain neutral axes. The situation is further
complicated by the lack of true steady-state creep as dis-
cussed in three case studies (b) to (d), except in case (a).

In what follows, an attempt will be made to examine
if any commonality or commutative relationship ex-
ists between the stress exponent determined from bend
creep curves and that from uniaxial creep curves. To
do so, the steady state creep rates need to be deter-
mined as function of stress and temperature. As men-
tioned earlier, the steady state creep rate is not well
defined for a creep curve which shows neither tertiary
creep nor appreciable steady state creep. Hence creep
rate at rupture, or at the end of the creep curve, was
used to characterize power law creep relation in [13].
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Typically, 4-point bend tests are short, often failed in
100 h or less [2–5] or being discontinued after com-
pleting several hundreds hours of testing because the
deflection creep curves often hint some appearance of
linear behavior due to the limitation of the sensitivity
of the deflection measurement equipment. LVDT (lin-
ear variable differential transformer) that is often used
to measure the deflection has a typical resolution of
±2 µm [1]. To examine the possible effect of creep du-
ration on the values of n and Q, two sets of creep rates
were determined based on the short-term (<312 h) and
long-term (<87,400 h) creep curves shown in Fig. 8a
and b, respectively. In Fig. 8a, apparent linear behav-
ior is discernible in creep curves beyond about 200 h.
However, these creep curves remain quite transient in
a smaller time scale as shown in Fig. 8b. Both the short
and long-term creep rates are plotted in Fig. 10. The data
do not all fall on straight lines. Nevertheless, a linear
relationship is usually established from experimental
bend data that often poise the characteristic features
similar to the filled data. Experimentally, the unfilled
data points located in the lower left corner of Fig. 10
may be not obtainable due to uncertainty and limita-

(a) (b)

(c) (d)

Figure 9 Stress redistribution during a four point bend test at 1300◦C for various initial elastic stress distributions: (a) 0 h; (b) 1 h; (c) 10 h; (d) 108 h;
(e) 1,056 h; (f) 10,080 h; (g) 87,840 h. (Continued. )

tions in deflection measurement instrument. A creep
rate of 10−5 µm/h produces a deflection about 1 µm
in 10 years, well within the resolution of the LVDT.
The unfilled square data point at the upper right corner
of Fig. 10 represents stress-rupture which is categori-
cally different from creep rupture being consider here.
The creep exponents, n, are estimated to be 4.7 and
5.2 based on the short-term and long-term filled data,
respectively.

Despite that the creep rates determined from the
short-term creep curves differ substantially from those
of the long-term creep curves by two orders of magni-
tude as indicated in Fig. 10, the two n values show a
remarkable agreement. The reason for this agreement
can be understood more easily if the three creep curves
simulated for 125, 150, and 175 MPa loading (the filled
data in Fig. 10) are replotted in a log-log scale as shown
in Fig. 11. As a first approximation, the curves be-
yond 100 h can be approximated with three parallel
lines with a slope less than 1. These observations sig-
nify two things. Firstly, it implies that the displacement
versus time data beyond 100 h can be described by
U = mt k,where k is a constant. Because all the three
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(e) (f)

(g)

Figure 9 (Continued).

Figure 10 Simulated creep displacement rates, based on the advanced
model combined with asymmetrical creep, as a function of the applied
moment at 312 h and 87,840 h respectively. The slopes, i.e., the creep
exponent for Equation 28, based on the filled data were estimated to be
4.7 and 5.2 for 312 h and 87,840 h respectively.

lines are parallel to each other, the ratio of any two dis-
placement rates at any given time must be independent
of time. Secondly, good fit of the displacement data by
a power function of time with an exponent other than

Figure 11 Simulated creep displacement based on the advanced model
combined with asymmetrical creep as a function of time in a log-log
scale. See Fig. 8a.

unity indicates the absence of steady state creep. From
the physical point of view, the insensitivity of n to time
may indicate that the creep characteristics at 312 hour
and 87840 hour are similar. This may be reasonable
because bend specimen with strong compression creep
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Figure 12 Simulated creep displacement rates, based on the power law
creep model combined with asymmetrical creep, as a function of the
applied moment at 312 h and 87,840 h respectively. The slopes, i.e., the
creep exponent for Equation 28, based on the filled data were estimated
to be 5.3 and 4.8 for 312 h and 87,840 h respectively.

Figure 13 Simulated creep displacement based on the power law creep
model combined with asymmetrical creep as a function of time in a
log-log scale.

resistance does not creep much after a few hundred
hours.

The creep displacement rates corresponding to the
filled data shown in Fig. 10 are also simulated for the
case (b) condition and plotted in Fig. 12 using the same
legend. Again, two values of creep exponent n are esti-
mated to be 5.3 and 4.8 for short- and long-term creep
curves, respectively. These values agree well not only
mutually but to those estimated in case (d) condition.
The displacement rates for the three filled circular sym-
bols shown in Fig. 12 versus time are plotted in log-log
diagram shown in Fig. 13. The creep curves beyond
100 h can again be approximated with three parallel
lines having a common slope of 0.34 to 0.39. The sim-
ilarity between case (d) and (b) is likely to be also due
to the strong compression creep resistance mentioned
earlier.

To examine the effects of temperature dependence,
creep curves at three temperatures of 1150, 1200, and
1250◦C are simulated and shown in Fig. 14, using case

(a)

(b)

(c)

Figure 14 Simulated creep curves based on the advanced model com-
bined with asymmetrical creep, (a) 1250◦C; (b) 1200◦C; (c) 1150◦C.

(d) condition. The deflection rate data at 312-h mark
or at rupture time, whichever is shorter, are shown in
Fig. 15. In order to determine the stress exponent and ac-
tivation energy (see Equation 8), Equation 28 is rewrit-
ten into the following form by including the temperature
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Figure 15 The creep rate data at 312 h, or earlier if the specimens rupture
before 312 h, based on the simulations shown in Figs 8 and 14. The solid
lines are the results of the regression analysis (n = 3.3, Q = 563 kJ/mole)
based on the filled data.

dependence term,

ln

(
dU

dt

)
+ ln

[
32

AL2

(
2n

2n + 1

)n

h2n+1
]

= n ln M − Q

RT
(38)

A simple linear multivariate regression analysis based
on Equation 38 for the filled data leads to n and Q
equal to 3.3 and 563 kJ/mole respectively. The re-
sults of the regression analysis are shown in Fig. 15
as solid straight lines. The open-symbol data are not
used in the regression analysis for the same rea-
sons discussed previously. Rupture lives under 4-point
bending at 1150◦C/450 MPa, 1200◦C/350 MPa, and
1250◦C/250 MPa are estimated to be 1.5 h, 0.48 h, and
0.3 h, respectively, based on case (d) condition. The
short rupture lives predicted from the test conditions
suggest that the slow-fracture tensile strengths may fall
within the scatter of the flexural strengths indicated. In
Ref. [11], the fracture strengths for tensile tests at a
loading rate of 7.5 MPa/m were estimated to be 490,
393, and 279 MPa at 1150, 1200, and 1250◦C, respec-
tively. The agreement between the predicted tensile and
flexural strength is respectable.

The preceding simulation study was repeated but us-
ing case (b) condition. Creep curves, not shown here,
are simulated up to 312 h, and creep rates at 312 h are
determined and shown in Fig. 16. Values of n and Q
are determined to be 4.8 and 572 kJ/mole, respectively,
based on the filled data points. The same exclusion rule
has been applied to the unfilled data points. A deflec-
tion creep rate lower than 10−3 µm/h as indicated by the
unfilled symbols accumulates less than 1 µm in 312 h
of creep.

Finally, the creep displacements based on the sym-
metrical power law creep model, i.e., case (a), under
various initial elastic stress distributions are also sim-
ulated as shown in Fig. 17. As would be expected, the
slopes of the lines in the later stage of the creep should
approach to a value of one. The creep rates as a function
of the applied moments are shown in Fig. 18. Based on

Figure 16 The creep rate data at 312 h, or earlier if the specimens rupture
before 312 h, based on the power law creep model combined with asym-
metrical creep. The solid lines are the results of the regression analysis
(n = 4.8, Q = 572 kJ/mole) based on the filled data.

(a)

(b)
Figure 17 Simulated creep displacement based on the symmetrical
power law creep model as a function of time. (a) linear scale; (b) log-log
scale.

the creep rates at 312 h (square symbols in Fig. 18), two
low-stress tests are still in transient stage at 312 h. The
stress exponent is estimated to be 8.1 from the short-
term data, and 12 based on the long-term data (circles)
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Figure 18 The creep rates as a function of the applied moments based
on the simulations shown in Fig. 17.

which are determined from tests that are most likely in
or approaching to steady state stage. The latter index
value and the exponent of 12.6 in Equation 8 are in
good agreement as would be expected.

6. Discussion
In the current study, two different material models were
considered, namely, advanced model and power law
creep model. For each model, two different cases were
investigated, symmetrical creep versus asymmetrical
creep. These two cases represent two extremes. The real
material behavior is somewhere in between depending
on the magnitude of compression creep. Since GN-10
appears to have little compression creep as shown in
Fig. 2, the advanced model combined with asymmet-
rical creep is expected to give a reasonably realistic
description of the behavior of CN-10 ceramic under
four-point bending. Of course, the model can be further
refined such as inclusion of the possible interaction be-
tween damage and creep [18], and even creep recovery
[19]. However, the above mechanisms are assumed to
play a minor role on the overall material response for
GN-10 based on the available experimental evidence.

The analyses carried out in the current study demon-
strated that the strees and strain fields in the specimen
during a creep bend test vary with respect to both time
and space in a very complicated way. For a given ap-
plied bending moment, the measured specimen deflec-
tion represents the averaged behavior due to these com-
plicated stress and strain fields. Therefore, it is difficult
to correlate the measured deflection with a particular
stress state. The validity of the stress exponent (n) and
activation energy (Q) extracted from the bend creep
tests depends strongly on how close the underlying as-
sumptions for the analysis is to reality. For example, in
the current study, Hollenberg’s analysis was used to ex-
tract n and Q which was based on the assumption that
material behavior follows power law creep model and
is symmetrical in tension and compression. Therefore
it’s not surprising that the n value estimated for case
(a), i.e., 12, is close to the input value, i.e., 12.6. For the
materials that have asymmetrical behavior in tension

and compression, Hollenberg’s analysis will of course
lead to much lower value for n because the deflection
represents the averaged response of large tension creep
and little compression creep.

In Refs. [1, 4], besides the deflection, the indenta-
tion technique was also used to pinpoint the location
of neutral axis and curvature rate. The tests had to be
constantly interrupted and the process was laborious.
More in situ measurements will of course be helpful
for understanding and interpreting the bend test data.
However, in this case, the major advantage of the bend
test, namely, simplicity, is relinquished.

7. Conclusion
A general formulation for bending analysis under creep
condition has been presented. The formulation is ca-
pable of embracing various material models. Through
the numerical simulations a good understanding of the
evolution of the deformation and stress fields inside the
specimen during four-point bend creep testing has been
achieved. The measured deflection in a bend creep test
represents the averaged response to the inhomogeneous
stress and strain distributions in the specimen. Hence, it
is generally difficult to use the deflection data alone to
extract intrinsic material information associated with a
particular stress state from this type of test. The validity
of the material parameters derived from these data de-
pends on the validity of the assumptions that underlie
the analysis. More in situ measurements to obtain in-
formation besides deflection, such as the location of the
neutral axis and curvature etc., will be helpful for in-
terpreting the bend test data. However, in this case, the
major advantage of the bend test, namely, simplicity, is
eradicated.
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